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Abstract The fracture process of composite laminates

subjected to static or fatigue tensile loading involves

sequential accumulation of intra- and interlaminar damage,

in the form of transverse cracking, splitting and delami-

nation, prior to catastrophic failure. Matrix cracking par-

allel to the fibres in the off-axis plies is the first damage

mode observed. Since a damaged lamina within the lami-

nate retains certain amount of its load-carrying capacity, it

is important to predict accurately the stiffness properties of

the laminate as a function of damage as well as progression

of damage with the strain state. In this paper, theoretical

modelling of matrix cracking in the off-axis plies of

unbalanced symmetric composite laminates subjected to

in-plane tensile loading is presented and discussed. A 2-D

shear-lag analysis is used to determine ply stresses in a

representative segment and the equivalent laminate concept

is applied to derive expressions for Mode I, Mode II and

the total strain energy release rate associated with off-axis

ply cracking. Dependence of the degraded stiffness prop-

erties and strain energy release rates on the crack density

and ply orientation angle is examined for glass/epoxy

laminates. Suitability of a mixed mode fracture criterion to

predict the cracking onset strain is also discussed.

Introduction

Interlaminar damage in the form of matrix cracks running

parallel to the fibres in off-axis plies of the laminate is the

first type of damage observed during the initial stages of

the failure process of polymer matrix composite laminates

reinforced with continuous fibres. Initiating long before the

laminate loses its load-carrying capacity, matrix cracking

gradually reduces the stiffness and strength of the laminate

[1], changes its coefficients of thermal expansion [2],

moisture absorption [3] and the natural frequency [4].

Cracks in the matrix may cause leaks in laminated com-

posite pressure vessels. Matrix cracking triggers develop-

ment of other, more harmful damage mechanisms, such as

delaminations [5] or matrix cracking in the adjacent ply

[6–8], or sometimes both. Delamination may result in fibre

breakage in the primary load-bearing plies [7] and lead

to the loss of the load-carrying capacity of the whole

laminate.

Studies of matrix cracking have been focusing pre-

dominantly on transverse cracks, i.e., matrix cracks in the

90�-plies of a laminate [9]. The laws of transverse

cracking in composite laminates reinforced by glass and

carbon fibres are in many respects similar. As a rule,

cracks in the matrix occur at equal distances from each

other [10] and immediately propagate from edge to edge,

cleaving the entire thickness of the damaged ply. Under

quasi-static loading, the strain corresponding to the

cracking onset decreases with an increased ply thickness

[11]. Under cyclic loading, the cycle number corre-

sponding to the beginning of cracking increases with an

increased loading amplitude [12]. The degree of transverse

cracking is characterized by crack density, i.e., the number

of cracks per unit length. After cracking has begun, the

crack density abruptly increases with the applied load. The
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rate of crack density increase gradually decreases and the

matrix cracking comes to saturation state, which is

sometimes called a characteristic damaged state. Specifics

of transverse cracking of the matrix in [90n /0m]s cross-ply

CFRP laminates were studied in [1, 13]. It was established

that transverse cracking in the outer 90�-plies begins at

lower strains than in the inner plies with a double thick-

ness. However, the saturation crack density is lower in this

case. Moreover, cracks are staggered rather than aligned in

the outer 90�-plies.

Comprehensive observations of sequential accumulation

of matrix cracks in off-axis plies have been reported in the

literature, in particular, for carbon/epoxy quasi-isotropic

[0/45/–45/90]s [14] and [0/90/–45/45]s [15] laminates,

carbon/epoxy angle-ply [02/h2 /–h2]s laminates [16], as

well as glass/epoxy quasi-isotropic [0/90/–45/45]s lami-

nates [17], glass/epoxy balanced [45/90]s and [90/45]s

laminates [18], and glass/epoxy angle-ply [0/h /0] [19]

and [0/h4/01/2]s [20] laminates. Longitudinal strain for

matrix cracking initiation was found to decrease with

increasing ply orientation angle. Also, it was established

that ply stresses normal to the fibres at crack formation

become progressively smaller as the ply orientation angle

increases [21].

The overwhelming majority of studies investigating

behaviour and properties of composite laminates with

matrix cracks assume that cracks are equally spaced and

therefore the analysis can be restricted to a representative

segment of the laminate, containing one crack. Stress fields

in the cracked off-axis plies were examined by means of

finite element method [17, 21] and analytically [22].

Analytical models have been developed to predict stiffness

degradation due to off-axis ply cracking in [h]s laminates

[23, 24] and quasi-isotropic laminates with matrix cracking

in all but 0� layers [25]. Strain energy release rate associ-

ated with matrix cracking in the h-layer of unbalanced

symmetric [0/h]s composite laminates was predicted ana-

lytically in [26].

The present paper is concerned with theoretical model-

ling of matrix cracking in off-axis plies of composite

laminates subjected to in-plane tensile loading. A 2-D

shear-lag analysis is used to determine ply stresses in a

representative segment and the equivalent laminate concept

is applied to derive expressions for Mode I, Mode II and

the total strain energy release rate associated with off-axis

ply cracking. Stiffness reduction due to damage and strain

energy release rates for off-axis ply cracking in unbalanced

symmetric [0/h]s laminates are predicted analytically, and

their dependence on the crack density and ply orientation

angle is examined for glass/epoxy laminates. Contributions

of Mode I and Mode II into the total strain energy rate are

identified and then used to predict cracking onset strains in

glass/epoxy laminates using a mixed mode fracture

criterion.

Stress analysis

A schematic of an unbalanced symmetric [0/h]s composite

laminate with off-axis ply cracks is shown in Fig. 1. The

laminate is referred to the global xyz and local x1 x2 x3

co-ordinate systems, with x1 directed along the fibres in the

h-layer. Matrix cracks are assumed to span the full width of

the laminate and full thickness of the h-layer and be spaced

uniformly at a distance 2s. Due to the periodicity of

damage, the stress analysis may be carried out over a

representative segment containing one matrix crack. Due to

symmetry, it can be further restricted to one quarter of the

representative segment, referred to the local co-ordinate

system x1 x2 x3.

Let ~rðkÞij and ~eðkÞij denote, respectively, the in-plane

microstresses and microstrains in the kth layer (i.e., stresses

and strains averaged across the layer thickness). The

in-plane microstresses may be determined by means of a

2-D shear lag analysis. The equilibrium equations in terms

of microstresses take the form

d~rð2Þj2

dx2

� sj

h2

¼ 0; j ¼ 1; 2 ð1Þ

By averaging the out-of-plane constitutive equations,

the interface shear stresses sj in Eq. (1) are expressed in

terms of the in-plane displacements ~uð1Þij and ~uð2Þij , averaged

across the thickness of, respectively, outer and inner layers,

so that

x

y
2x

s2

1x

matrix cracks

2h2

0
ο

q

q

Fig. 1 Front and edge views of an unbalanced symmetric [0/h]s

laminate with off-axis ply cracks
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sj ¼ Kj1ð~uð2Þ1 � ~uð1Þ1 Þ þ Kj2ð~uð2Þ2 � ~uð1Þ2 Þ ð2Þ

The shear lag parameters K11, K22 and K12( ” K21) are

determined on the assumption that the out-of-plane shear

stresses vary linearly with x3, see Appendix A. Substitution

of Eq. (2) into Eq. (1) and subsequent differentiation with

respect to x2 lead to the equilibrium equations in terms of

in-plane microstresses and microstrains

d2

dx2
2

~rð2Þ12 þ K11ð~cð1Þ12 � ~cð2Þ12 Þ þ K12ð~eð1Þ22 � ~eð2Þ22 Þ ¼ 0 ð3aÞ

d2

dx2
2

~rð2Þ22 þ K21ð~cð1Þ12 � ~cð2Þ12 Þ þ K22ð~eð1Þ22 � ~eð2Þ22 Þ ¼ 0 ð3bÞ

To exclude the microstrains, constitutive equations for both

layers are employed
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as well as the generalised plane strain condition ~eð1Þ11 ¼ ~eð2Þ11

and equations of the global equilibrium of the laminate

h1
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Finally, a system of coupled second order non-homo-

geneous ordinary differential equations is obtained (see

Appendix B), solutions to which are

~rð2Þj2 ¼
X2

k¼1

Akj
cosh kkðx2 � sÞ

cosh kks
þ Cj

 !

�rx; ð6Þ

Here �rx is the applied stress, kk are the roots of the char-

acteristic equation, and Akj and Cj (j = 1,2) are constants

depending on the in-plane stiffness properties ½Q̂ð1Þ�; ½Q̂ð2Þ�

of the intact material of the layers, shear lag parameters

K11, K22 and K12 and angle h.

Stiffness analysis

The in-plane microstresses in the damaged layer can be

used to evaluate the reduction of the laminate stiffness

properties due to damage. Instead of the damaged laminate

one considers an ECM laminate, in which the damaged ply

is replaced with an equivalent homogeneous layer with

degraded stiffness properties. The constitutive equations of

the ‘equivalent’ layer are

f�rð2Þg ¼ ½�Qð2Þ�f�eð2Þg ð7Þ

The lamina macrostresses f�rð2Þg, involved in Eq. (7), are

obtained by averaging the microstresses, Eq. (6), across the

length of the representative segment as explicit functions of

the relative crack density Dmc=h2/s

�rð2Þj2 ¼
X2

k¼1

Akj
Dmc

kkh2

tanh
kkh2

Dmc
þCjÞ

 !

�rx; j ¼ 1; 2 ð8Þ

The macrostrains in the equivalent layer f�eð2Þg are cal-

culated from the constitutive equations for both layers, Eq.

(4), and equations of the global equilibrium of the laminate,

Eq. (5), assuming f�eð2Þg ¼ f�eð1Þg.
The in-plane stiffness matrix ½�Qð2Þ� of the equivalent

homogeneous layer in the local co-ordinate system is

related to the in-plane stiffness matrix ½Q̂ð2Þ� of the

undamaged material via the In-situ Damage Effective

Functions (IDEFs) [27] Ljj=Ljj(D
mc), j=2,6 as

½�Qð2Þ� ¼ ½Q̂ð2Þ�

�
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Substituting Eq. (9) into the constitutive equations for the

‘equivalent’ layer, Eq. (7), gives the IDEFs L22, L66 in terms

of the lamina macrostresses f�rð2Þg and macrostrains f�eð2Þg as

K22 ¼ 1� �rð2Þ22

Q̂
ð2Þ
12 �eð2Þ11 þ Q̂

ð2Þ
22 �eð2Þ22

; K66 ¼ 1� �rð2Þ12

Q̂
ð2Þ
66 �cð2Þ12

ð10Þ
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The in-plane stiffness matrix ½�Q�2 of the ‘equivalent’

layer in the global co-ordinate system xyz (Fig. 1) can be

obtained from the in-plane stiffness matrix ½�Qð2Þ� in the

local co-ordinate system x1 x2 x3 by the well-known

transformation formulae [28].

Fracture analysis

The total strain energy release rate Gmc associated with

matrix cracking in the h-layer of the [0/h]s laminate is

equal to the first partial derivative of the total strain energy

U stored in the damaged laminate with respect to the total

area covered by cracks provided the applied strains f�eg are

fixed

Gmc ¼ � @U
@Amc

�
�
�
�
f�eg

ð11Þ

In the global co-ordinates, the total strain energy stored

in the laminate element with a finite gauge length L and

width w is

U ¼ wL
2

X

k

ðzk � zk�1Þðf�eg þ f�ethermal
k g

þ f�ehygro
k gÞT½�Q�kðf�eg þ f�ethermal

k g þ f�ehygro
k gÞ

ð12Þ

where f�ethermal
k gand f�ehygro

k g are, respectively, residual

thermal and residual hygroscopic strains in the laminate

due to the temperature and moisture difference between the

stress-free and actual state, and ½�Q�k is the in-plane reduced

stiffness matrix of layer k in the global co-ordinates.

Since the area of a single crack is equal to amc=2h2 w/|

sinh |, the total area covered by all cracks is equal to

Amc ¼ amcCmcL ¼ LwDmc=j sin hj ð13Þ

If hygrothermal effects are neglected, the strain energy

releases rate for matrix cracking, calculated from Eq. (11)

to Eq. (13), is

Gmcð�e; DmcÞ ¼ �h2f�egT @½�Q�2
@Dmc

f�egj sin hj ð14Þ

Under uniaxial strain, Eq. (14) simplifies to

Gmcð�exx; DmcÞ ¼ �h2�e2
xx

@ �Qxx;2

@Dmc
j sin hj ð15Þ

Calculation of the in-plane axial stiffness �Qxx;2 using Eq.

(9) and the transformation formulae [28], yields the strain

energy release rate for off-axis ply cracking in terms of the

In-situ Damage Effective Functions (IDEFs) L22, L66 and

stiffness properties of the undamaged material Q̂
ð2Þ
ij as

follows:

Gmcð�exx;DmcÞ

¼ h2�e2
xx

" 
Q̂
ð2Þ2
12

Q̂
ð2Þ
22

cos4 hþ 2Q̂
ð2Þ
12 sin2 hcos2 hþþ Q̂

ð2Þ
22 sin4 h

!

� @K22

@Dmc
þ 4Q̂

ð2Þ
66 sin2 h cos2 h

@K66

@Dmc

#

j sinhj

ð16Þ

The first partial derivatives of IDEFs that appear in Eq.

(16) are explicit functions of the relative crack density Dmc

and can be calculated analytically.

Even under the uniaxial loading, damage development

in the off-axis plies of general symmetric laminates always

occurs under mixed mode conditions due to shear-exten-

sion coupling. It is, therefore, important in the calculation

of the total strain energy release rate to be able to separate

Mode I and Mode II contributions.

For a [0/h]s laminate with damaged h-layer modelled by

an ‘equivalent’ laminate, the total strain energy release rate

for off-axis ply cracking is equal to the first partial deriv-

ative of the portion of the total strain energy stored in the

equivalent homogeneous layer with respect to damage area

Gmc ¼ � @U ð2Þ

@Amc

�
�
�
�
f�eg

ð17Þ

In the local co-ordinates (Fig. 1), this portion of the total

strain energy can be separated into extensional and shear

parts

U ð2Þ ¼ U ð2ÞI þ U ð2ÞII ¼ Lwh2ð�rð2Þ11 �eð2Þ11 þ �rð2Þ22 �eð2Þ22 Þ
þ Lwh2 �rð2Þ12 �cð2Þ12

ð18Þ

Under uniaxial strain �exx, strains and stresses in the

‘equivalent’ homogeneous layer are

f�eð2Þg ¼ fcos2 h; sin2 h; 2 cos h sin hgT�exx;

f�rð2Þg ¼ ½Qð2Þ�fcos2 h; sin2 h; 2 cos h sin hgT�exx

ð19Þ

where the modified stiffness matrix [Q(2)] of the equivalent

homogeneous layer in the local co-ordinates is given by

Eq. (9). Substitution of Eqs. (13), (18) and (19) into Eq.

(17) gives Mode I and Mode II contributions into the total

strain energy release rate for off-axis ply cracking
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Gmc
I ¼ �

@U ð2ÞI

@Amc
¼ �e2

xxf mc
1 ðDmcÞ ð20aÞ

f mc
1 ðDmcÞ ¼ h2

 
Q̂
ð2Þ2
12

Q̂
ð2Þ
22

cos4 hþ 2Q̂
ð2Þ
12 sin2 h cos2 h

þ Q̂
ð2Þ
22 sin4 h

!
@K22

@Dmc
j sin hj

ð20bÞ

Gmc
II ¼ �

@U ð2ÞII

@Amc
¼ �e2

xxf mc
2 ðDmcÞ ð21aÞ

f mc
2 ðDmcÞ ¼ 4h2Q̂

ð2Þ
66

@K66

@Dmc
cos2 hj sin3 hj ð21bÞ

These expressions can be used with appropriate fracture

criteria to estimate the onset of matrix cracking in the off-

axis plies. The resulting total strain energy release rate

Gmc=GI
mc +GII

mc coincides with Eq. (16).

Results and discussion

To validate the developed approach, a case of [30/90]s

laminate with matrix cracks in the 90�-ply was consid-

ered, and the results were compared to predictions made

using the generalised plane strain model [29]. The

properties of a unidirectional glass/epoxy material system

used in the calculations were as follows: ply thickness

0.25 mm, longitudinal Young’s modulus EA =45.6 GPa,

transverse Young’s modulus ET = 16.2 GPa, in-plane

shear modulus lA=5.83 GPa, major Poisson’s ratio

mA = 0.278, minor Poisson’s ratio mT =0.4. From the

laminated plate theory [28] stiffness properties of

the intact [30/90]s laminate are calculated as follows:

axial modulus Êx ¼ 20:9 GPa, transverse modulus Êy ¼
30:4 GPa, in-plane shear modulus Ĝxy ¼ 7:76 GPa, major

Poisson’s ratio m̂x ¼ 0:2, axial and transverse shear-exten-

sion coupling coefficients gxy,x = –0.53, gxy,y = –0.014,

respectively. Table 1 shows reduction of the laminate’s

stiffness properties as a function of a crack density in

the 90�-ply. As one would expect, the present shear

lag-based model predicts slightly bigger stiffness reduction

than the generalised plane strain approach used in combi-

nation with ply refinement technique. For the axial

Young’s modulus the difference is within 4.1%, for shear

modulus within 7.2%, for Poisson’s ratio within 3.9%,

and for axial and transverse shear-extension coupling

coefficients within 5.3% and 3.4%, respectively. It is

anticipated that the difference between two approached

would be smaller if lower levels of ply refinement are

used in the generalised plane strain model [29].

Reduction of the laminate’s stiffness properties with the

crack density Cmc = (2s)–1 in [0/h]s glass/epoxy laminates

is shown in Fig. 2 for four ply orientation angles h: 45�, 60�,

75� and 90�. The plotted values represent normalised (i.e.,

Table 1 Stiffness properties of a [30/90]s glass/epoxy cracked

laminate

Crack density

(crack/cm)

Present

model

McCartney’s

model [29]

Difference (%)

Axial Young’s modulus

0 20.93 20.9287 0.0%

5 17.82 18.0412 –1.2%

10 15.68 15.9644 –1.8%

15 14.41 14.7812 –2.5%

20 13.67 14.1276 –3.2%

25 13.22 13.7295 –3.7%

30 12.93 13.4625 –4.0%

35 12.73 13.2697 –4.1%

40 12.6 13.1231 –4.0%

Shear modulus

0 7.756 7.7565 0.0%

5 6.807 7.0439 –3.4%

10 6.157 6.4582 –4.7%

15 5.668 6.0115 –5.7%

20 5.315 5.6882 –6.6%

25 5.071 5.4546 –7.0%

30 4.902 5.2831 –7.2%

35 4.782 5.1543 –7.2%

40 4.697 5.0551 –7.1%

Poisson’s ratio

0 0.2049 0.2049 0.0%

5 0.1762 0.1782 –1.1%

10 0.1564 0.1591 –1.7%

15 0.1445 0.1481 –2.4%

20 0.1375 0.1419 –3.1%

25 0.1332 0.1382 –3.6%

30 0.1305 0.1356 –3.8%

35 0.1286 0.1338 –3.9%

40 0.1273 0.1324 –3.9%

Axial shear-extension coupling coefficient

0 –0.5292 –0.5292 0.0%

5 –0.5889 –0.5791 1.7%

10 –0.6354 –0.6179 2.8%

15 –0.6753 –0.65 3.9%

20 –0.7078 –0.676 4.7%

25 –0.7325 –0.6966 5.2%

30 –0.7508 –0.7129 5.3%

35 –0.7643 –0.7257 5.3%

40 –0.7743 –0.7359 5.2%

Transverse shear-extension coupling coefficient

0 –0.009838 –0.0098 0.4%

5 –0.008167 –0.0079 3.4%

10 –0.006807 –0.0066 3.1%

15 –0.00604 –0.0059 2.4%

20 –0.005657 –0.0056 1.0%

25 –0.005458 –0.0055 –0.8%

30 –0.005348 –0.0054 –1.0%

35 –0.005283 –0.0054 –2.2%

40 –0.005241 –0.0053 –1.1%
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referred to their values in the undamaged state) axial

modulus Ex=Êx (Fig. 2a), transverse modulus Ey=Êy

(Fig.2b), in-plane shear modulus Gxy=Ĝxy (Fig.2c) and

major Poisson’s ratio mxy=m̂xy (Fig. 2d). It may be seen that

the most significantly reduced properties are transverse and

shear moduli. While in cross-ply [0/90]s laminates the
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Fig. 2 Normalised stiffness properties of [02 /h2]s glass/epoxy laminates as a function of crack density Cmc in the inner h-layer (cracks/cm): (a)

axial modulus; (b) transverse modulus; (c) shear modulus; (d) major Poisson’s ratio
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Poisson’s ratio decreases monotonously with the crack

density, this is not the case for other ply orientation angles

(Fig. 2d).

Unbalanced angle-ply laminates, such as [0/h]s lay-up,

exhibit shear extension coupling characterised by axial

gxy;x ¼ �cxy=�ex and transverse gxy;y ¼ �cxy=�ey shear-extension

coefficients. Figure 3 shows variation of the shear-extension

coupling coefficients with the crack density Cmc in [0/h]s

glass/epoxy laminates for the same range of ply orientation

angles h. It may be seen that for some ply orientation angles,

matrix cracking in the off-axis ply can significantly increase

shear-extension coupling.

Glass/epoxy angle-ply laminates exhibit significantly

higher levels of normalised strain energy release rates for

matrix cracking than carbon/epoxy ones [22]. Figure 4

shows Mode I (Fig.4a) and Mode II (Fig. 4b) contributions

as well as the total normalised strain energy release rate

Gmc=�e2
xx (Fig. 4c) associated with matrix cracking in glass/

epoxy [0/h]s laminates as a function of crack density Cmc

for four ply orientation angles: 45�, 60�, 75� and 90�. As

the ply orientation angle increases, Mode I contribution

into the total energy release rate increases, too (Fig. 4a),

while Mode II contribution decreases (Fig. 4b) becoming

zero in the case of a cross-ply [0/90]s laminate.

To predict the development of the off-axis ply cracks in

the h-layer of a [0/h]s laminate, it is suggested to use a

mixed mode fracture criterion

GI

GIC

� �M

þ GII

GIIC

� �N

¼ 1 ð22Þ

where GIC and GIIC are, respectively, Mode I and Mode II

interlaminar fracture toughnesses. The exponents M and N

depend on the material system. Following [30], we take

them for a glass/epoxy system as M = 1, N = 2.

Predicted cracking onset strains for [0/h]s glass/epoxy

laminates are shown in Fig. 5 together with experimentally

obtained data for specimens with as-cut, polished and notched

edges [19]. To predict cracking onset strains, GI
mc and GII

mc

values are calculated from Eqs. (20) and (21), and cracking

onset strain �exx is found as a root of the following equation

�e4
xx

f2ðDmcÞ
GIIC

� �2

þ�e2
xx

f1ðDmcÞ
GIC

� �

¼ 1 when Dmc ! 0

ð23Þ

Since for the considered glass/epoxy system the exact GIC

and GIIC critical values are unknown, predictions are made

using typical for glass/epoxy systems values of GIC =200 J/

m2 and GIIC = 1500 J/m2.
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Fig. 3 Shear extension coupling coefficients of a [02 /h2]s glass/

epoxy laminates as a function of crack density Cmc in the inner layer
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Comparison with limited experimental data shows that

the mixed mode fracture criterion, Eq. (22), can success-

fully predict the initiation of matrix cracking for ply

orientation angles 75� £ h £ 90�. For 45� £ h £ 75�,

measured strains are much higher than predictions. Also,

they increase steeply as h decreases.
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Further work is required to develop an appropriate

fracture or failure criterion that captures initiation and

development of matrix cracks in off-axis plies of composite

laminates reinforced by glass or carbon fibres, especially

for h < 75�.

Conclusions

Matrix cracks parallel to the fibres in the off-axis plies is

the first intralaminar damage mode observed in laminated

composites subjected to static or fatigue in-plane tensile

loading. They reduce laminate stiffness and strength and

trigger development of other damage modes, such as del-

aminations. This paper is concerned with theoretical

modelling of continuous fibre-reinforced polymer matrix

composite laminates with off-axis ply cracks. Closed-form

analytical expressions are derived for Mode I, Mode II and

the total strain energy release rates associated with off-axis

ply cracking in [0/h]s laminates, representing them as linear

functions of the first partial derivatives of the effective

elastic properties of the damaged layer with respect to

appropriate damage parameters. These expressions can be

used with appropriate fracture criteria to estimate the onset

and growth of damage in off-axis plies.

As far as stiffness reduction induced by matrix cracking

is concerned, the laminate axial and transverse moduli of

angle-ply laminates are reduced more significantly than

respective stiffness properties of cross-ply laminates, while

for the shear modulus, the opposite is true. Matrix cracking

in the off-axis plies can also result in an increase in the

Poisson’s ratio of the laminate.
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Appendix A

Variation of the out-of-plane shear stresses has the form

rð2Þj3 ¼
sj

h2

x3; 06jx3j6h2;

j ¼ 1; 2; rð1Þj3 ¼
sj

h1

ðh� x3Þ; h26jx3j6h
ð24Þ

Constitutive equations for the out-of-plane shear stresses

are

rðkÞ13

rðkÞ23

( )

� QðkÞ55 QðkÞ45

QðkÞ45 QðkÞ44

" #
@

@x3

uðkÞ1

uðkÞ2

( )

; i ¼ 1; 2 ð25Þ

After substituting Eq. (25) into Eq. (24), multiplying

them by x3 and by h–x3 respectively and integrating with

respect to x3 we get

h1

3

s1

s2

� �

¼ Q̂
ð1Þ
55 Q̂

ð1Þ
45

Q̂
ð1Þ
45 Q̂

ð1Þ
44

" #
~uð1Þ1

~uð1Þ2

( )

� U1

U2

� � !

ð26aÞ

h2

3

s1

s2

� �

¼ Q̂
ð2Þ
55 Q̂

ð2Þ
45

Q̂
ð2Þ
45 Q̂

ð2Þ
44

" #
U1

U2

� �

� ~uð2Þ1

~uð2Þ2

( ) !

ð26bÞ

Here {Uj }={uj
(1) }|x_3 =h_2 ={uj

(2) }| x_3 =h_2, j=1,2 are

the in-plane displacements at the interface. After rear-

ranging Eqs. (26a) and (26b) become

(
~uð1Þ1

~uð1Þ2

)

�
(

~uð2Þ1

~uð2Þ2

)

¼
 

h1

3

"
Q̂
ð1Þ
55 Q̂

ð1Þ
45

Q̂
ð1Þ
45 Q̂

ð1Þ
44

#�1

þ h2

3

"
Q̂
ð2Þ
55 Q̂

ð2Þ
45

Q̂
ð2Þ
45 Q̂

ð2Þ
44

#�1!( s1

s2

)
ð27Þ
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Fig. 5 Off-axis ply cracking onset strain as a function of ply

orientation angle h in glass/epoxy [0/h]s laminates
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Inversion of Eq. (27) leads to

s1

s2

� �

¼ K11 K12

K21 K22

� �
~uð1Þ1

~uð1Þ2

( )

� ~uð2Þ1

~uð2Þ2

( ) !

; ð28aÞ

K11 K12

K21 K22

� �

¼ h1

3

Q̂
ð1Þ
55 Q̂

ð1Þ
45

Q̂
ð1Þ
45 Q̂

ð1Þ
44

" #�1
0

@ þh2

3

Q̂
ð2Þ
55 Q̂

ð2Þ
45

Q̂
ð2Þ
45 Q̂

ð2Þ
44

" #�1
1

A

�1

ð28bÞ

Appendix B

On applying the constitutive equations, inverse to Eq.

(4), the generalised plane strain condition ~eð1Þ11 ¼ ~eð2Þ11

becomes

Sð1Þ11 ~rð1Þ11 þ Sð1Þ12 ~rð1Þ22 þ Sð1Þ16 ~rð1Þ12 ¼ Ŝ
ð2Þ
11 ~rð2Þ11 þ Ŝ

ð2Þ
12 ~rð2Þ22 ð29Þ

where Ŝ
ðkÞ
ij are the compliances for the kth layer. Using the

laminate equilibrium equations, Eq. (5), stresses in the 1st

layer can be excluded, so that

~rð2Þ11 ¼ a22 ~rð2Þ22 þ a12 ~rð2Þ12 þ b�rx; ð30Þ

a22 ¼ �
Ŝ
ð1Þ
12 þ vŜ

ð2Þ
12

Ŝ
ð1Þ
11 þ vŜ

ð2Þ
11

; a12 ¼ �
Ŝ
ð1Þ
16

Ŝ
ð1Þ
11 þ vŜ

ð2Þ
11

; v ¼ h1

h2

;

b ¼ ð1þ vÞ ðŜ
ð1Þ
11 cos2 hþ Ŝ

ð1Þ
12 sin2 h� Ŝ

ð1Þ
16 sin h cos hÞ

Ŝ
ð1Þ
11 þ vŜ

ð2Þ
11

Finally, strain differences are expressed in terms of stresses

as

~cð1Þ12 � ~cð2Þ12

~eð1Þ22 � ~eð2Þ22

( )

¼ � 1

v
L11 L12

L21 L22

� �
~rð2Þ12

~rð2Þ22

( )

þ 1

v
M1

M12

� �

�rx

ð31Þ

Here

L11 ¼ Ŝ
ð1Þ
66 þ a12Ŝ

ð1Þ
16 þ vŜ

ð2Þ
66 ; L12 ¼ Ŝ

ð1Þ
26 þ a22Ŝ

ð1Þ
16

L21 ¼ Ŝ
ð1Þ
26 þ a12Ŝ

ð1Þ
12 þ va12Ŝ

ð2Þ
12 ; L22 ¼ Ŝ

ð1Þ
22 þ a22Ŝ

ð1Þ
12

þ vðŜð2Þ22 þ a22Ŝ
ð2Þ
12 Þ

M1¼ ð1þvÞ
"

ðŜð1Þ16 þa12Ŝ
ð2Þ
11 Þcos2 hþðŜð1Þ26 þa12Ŝ

ð1Þ
12 Þsin2 h

�ðŜð1Þ66 þa12Ŝ
ð1Þ
16 Þsinhcosh

#

M2 ¼ ð1þ vÞ
"

ðŜð1Þ12 þ a22Ŝ
ð1Þ
11 Þ cos2 hþ:ðŜð1Þ22 þ a22Ŝ

ð1Þ
12 Þ

sin2 h� ðŜð1Þ26 þ a22Ŝ
ð1Þ
16 Þ sin h cos h

#

Substitution into the equilibrium equations, Eq. (3),

yields the following coupled 2nd order differential equa-

tions

d2

dx2
2

~rð2Þ12

~rð2Þ22

( )

� 1

h1

K11 K12

K12 K22

� �

L11 L12

L12 L22

� �
~rð2Þ12

~rð2Þ22

( )

þ
M1

M2

� �

�rx

 !

¼ 0

ð32Þ

This set of equations is uncoupled at the expense of

increasing the order of differentiation, resulting in a fourth

order non-homogeneous ordinary differential equation.
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